

Reference number
ECMA-123:2009

© Ecma International 2009

Ecma/TC39/2013/NN

ECMA-XXX
1st Edition / July 2013

4th Draft

The JSON Data
Interchange Format

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2013

© Ecma International 2013 i

Contents Page

1 Scope ... 2

2 Conformance ... 2

3 Normative references ... 2

4 JSON Text .. 2

5 JSON Values .. 2

6 Objects ... 3

7 Arrays .. 3

8 Numbers .. 4

9 String ... 4

10 Security Considerations ... 6

ii © Ecma International 2013

Introduction

JSON is a text format that facilitates structured data interchange between all programming languages. JSON
is a syntax of braces, brackets, colons, and commas that is useful in many contexts, profiles, and applications.
JSON was inspired by the object literals of JavaScript aka ECMAScript as defined in the ECMASCRIPT

PROGRAMMING LANGUAGE STANDARD, THIRD EDITION. It does not attempt to impose ECMAScript’s internal
data representations on other programming languages. Instead, it shares a small subset of ECMAScript’s
textual representations with all other programming languages.

JSON is agnostic about numbers. In any programming language, there can be a variety of number types of
various capacities and complements, fixed or floating, binary or decimal. That can make interchange between
different programming languages difficult. JSON instead offers only the representation of numbers that
humans use: a sequence of digits. All programming languages know how to make sense of digit sequences
even if they disagree on internal representations. That is enough to allow interchange.

It is wise to encode JSON in Unicode, but JSON itself does not require that. JSON’s only dependence on
Unicode is in the hex numbers used in the \u escapement notation. JSON can be used with other character
sets, and in contexts where there is no character encoding at all such as paper documents and marble
monuments.

Programming languages vary widely on whether they support objects, and if so, what characteristics and
constraints the objects offer. The models of object systems can be wildly divergent and are continuing to
evolve. JSON instead provides a simple notation for expressing collections of name/value pairs. Most
programming languages will have some feature for representing such collections, which can go by names like
record, struct, dict, map, hash, or object.

JSON also provides support for ordered lists of values. All programming languages will have some feature for
representing such lists, which can go by names like array, vector, or list. Because objects and arrays
can nest, trees and other complex data structures can be represented. By accepting JSON’s simple
convention, complex data structures can be easily interchanged between incompatible programming
languages.

JSON does not support cyclic graphs, at least not directly. JSON is not indicated for applications requiring
binary data.

It is expected that other standards will refer to this one, strictly adhering to the JSON text format, while
imposing restrictions on various encoding details. Such standards may require specific behaviours. JSON
itself specifies no behaviour.

Because it is so simple, it not expected that the JSON grammar will ever change. This gives JSON, as a
foundational notation, tremendous stability. JSON was first presented to the world at the JSON.org website in
2001. JSON stands for JavaScript Object Notation.

© Ecma International 2013 iii

This Ecma Standard has been adopted by the General Assembly of <month> <year>.

iv © Ecma International 2013

"COPYRIGHT NOTICE

© 2013 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

© Ecma International 2013 v

© Ecma International 2013

The JSON Data Interchange Format

1 Scope

JSON is a lightweight, text-based, language-independent data interchange format. It was derived from the
ECMAScript Programming Language Standard, but is programming language independent. JSON defines a
small set of formatting rules for the portable representation of structured data.

2 Conformance

A conforming JSON generator or encoder will produce texts that strictly conform to the JSON grammar.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646, Information Technology – Universal Coded Character Set (UCS)

ECMA-262, The ECMAScript Programming Language, 3th edition (December 1999)

4 JSON Text

A JSON text is a sequence of tokens. The set of tokens includes six structural characters, strings, numbers,
and three literal names.

The six structural characters:

{ } [] : ,

Insignificant whitespace is allowed before or after any of the six structural characters.

There are three literal names:

true

false

null

5 JSON Values

A JSON value can be an object, array, number, string, true, false, or null.

© Ecma International 2009 – All rights reserved

Figure 1 — value

6 Objects

An object structure is represented as a pair of curly brackets surrounding zero or more name/value pairs. A
name is a string. A single colon comes after each name, separating the name from the value. A single comma
separates a value from a following name. The order of the pairs is not significant.

Figure 2 — object

7 Arrays

An array structure is represented as square brackets surrounding zero or more values. The values are
separated by commas. The order of the values is significant.

© Ecma International 2013

Figure 3 — array

8 Numbers

A number is represented in base 10 with no superfluous leading zero. It may have a preceding minus sign. It
may have a .-prefixed fractional part. It may have an exponent of ten, prefixed by e or E and optionally + or -.

Figure 4 — number

Numeric values that cannot be represented as sequences of digits (such as Infinity and NaN) are not
permitted.

9 String

The representation of strings is similar to conventions used in the C family of programming languages, a
family that includes ECMAScript. A string is a sequence of characters wrapped with quotation marks. All
characters may be placed within the quotation marks except for the characters that must be escaped:
quotation mark, reverse solidus, and control characters.

© Ecma International 2009 – All rights reserved

There are two-character escape sequence representations of some characters.

\" represents the quote character.

\\ represents the reverse solidus character.

\/ represents the solidus character. This makes it possible to embed JSON in HTML.

\b represents the backspace character.

\f represents the formfeed character.

\n represents the new line or linefeed character.

\r represents the carriage return character.

\t represents the tab character.

So, for example, a string containing only a single reverse solidus character may be represented as "\\".

Any character may be represented as a hexadecimal number. The meaning of such a number is determined
by ISO/IEC 10646. If the character is in the Basic Multilingual Plane (U+0000 through U+FFFF), then it may
be represented as a six-character sequence: a reverse solidus, followed by the lowercase letter u, followed
by four hexadecimal digits that encode the character's Unicode code point. The hexadecimal letters A though
F can be upper or lowercase. So, for example, a string containing only a single reverse solidus character may
be represented as "\u005C".

The following four cases all produce the same result:

"\u002F"

"\u002f"

"\/"

"/"

To escape an extended character that is not in the Basic Multilingual Plane, the character is
represented as a twelve-character sequence, encoding the UTF-16 surrogate pair. So for example,
a string containing only the G clef character (U+1D11E) may be represented as "\uD834\uDD1E".

© Ecma International 2013

"
" \

\ "

\

/

b

f

n

r

t

u

"

Figure 5 — string

10 Security Considerations

With any data format, it is important to encode correctly. Care must be taken when constructing JSON texts
by concatenation. For example:

account = 4627;

comment = '","account":262'; // provided by attacker

json_text = '{"account":' + account + ',"comment":"' + comment + '"}';

The result will be

{"account":4627,"comment":"","account":262}

which in some situations might be seen as being the same as

{"comment":"","account":262}

This confusion allows an attacker to modify the account property or any other property.

© Ecma International 2009 – All rights reserved

It is much wiser to use JSON libraries, which are available in many forms for most programming languages, to
do the encoding, avoiding the confusion hazard.

JSON is so similar to some programming languages that the native parsing ability of the language processors
can be used to parse JSON texts. This should be avoided because the native parser will accept and execute
code that is not JSON.

For example, ECMAScript's eval() function is able parse JSON text, but is can also parse programs. If an
attacker can inject code into the JSON text (as we saw above), then it can compromise the system. JSON
decoders should always be used instead. The web browser's <script> tag is an alias for the eval()
function. It should not be used to deliver JSON text to web browsers.

© Ecma International 2013

Annex A
(normative)

JSON Object Grammar For Object

Meaningless whitespace may be inserted
between any of these tokens
to improve human readability.

object

{ }

{ members }

members

pair

pair , members

pair

string : value

© Ecma International 2009 – All rights reserved

Annex B
(normative)

JSON Array Grammar

Meaningless whitespace may be inserted
between any of these tokens
to improve human readability.

array

[]

[elements]

elements

value

value , elements

© Ecma International 2013

Annex C
(normative)

JSON Value Grammar

value

string

number

object

array

true

false

null

© Ecma International 2009 – All rights reserved

Annex D
(normative)

JSON Grammar For Number

Whitespace may not be inserted into a number.
number

int

int frac

int exp

int frac exp

int

digit

digit1-9 digits

- digit

- digit1-9 digits

frac

. digits

exp

e digits

digits

digit

digit digits

e

e

e+

e-

E

E+

E-

© Ecma International 2013

digit1-9

1

2

3

4

5

6

7

8

9

digit

0

digit1-9

© Ecma International 2009 – All rights reserved

Annex E
(normative)

JSON Grammar For String

Strings may not contain control characters. Spaces within a string are literal.
string

" "

" chars "

chars

char

char chars

char

any-character-except-"-or-\-or-control-character

\"

\\

\/

\b

\f

\n

\r

\t

\u hex hex hex hex

hex

digit

a

b

c

d

e

f

© Ecma International 2013

A

B

C

D

E

F

